3.548 \(\int (a+b \sin ^2(c+d x))^p \tan ^4(c+d x) \, dx\)

Optimal. Leaf size=101 \[ \frac{\sin ^4(c+d x) \sqrt{\cos ^2(c+d x)} \tan (c+d x) \left (a+b \sin ^2(c+d x)\right )^p \left (\frac{b \sin ^2(c+d x)}{a}+1\right )^{-p} F_1\left (\frac{5}{2};\frac{5}{2},-p;\frac{7}{2};\sin ^2(c+d x),-\frac{b \sin ^2(c+d x)}{a}\right )}{5 d} \]

[Out]

(AppellF1[5/2, 5/2, -p, 7/2, Sin[c + d*x]^2, -((b*Sin[c + d*x]^2)/a)]*Sqrt[Cos[c + d*x]^2]*Sin[c + d*x]^4*(a +
 b*Sin[c + d*x]^2)^p*Tan[c + d*x])/(5*d*(1 + (b*Sin[c + d*x]^2)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.127491, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3196, 511, 510} \[ \frac{\sin ^4(c+d x) \sqrt{\cos ^2(c+d x)} \tan (c+d x) \left (a+b \sin ^2(c+d x)\right )^p \left (\frac{b \sin ^2(c+d x)}{a}+1\right )^{-p} F_1\left (\frac{5}{2};\frac{5}{2},-p;\frac{7}{2};\sin ^2(c+d x),-\frac{b \sin ^2(c+d x)}{a}\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x]^2)^p*Tan[c + d*x]^4,x]

[Out]

(AppellF1[5/2, 5/2, -p, 7/2, Sin[c + d*x]^2, -((b*Sin[c + d*x]^2)/a)]*Sqrt[Cos[c + d*x]^2]*Sin[c + d*x]^4*(a +
 b*Sin[c + d*x]^2)^p*Tan[c + d*x])/(5*d*(1 + (b*Sin[c + d*x]^2)/a)^p)

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \left (a+b \sin ^2(c+d x)\right )^p \tan ^4(c+d x) \, dx &=\frac{\left (\sqrt{\cos ^2(c+d x)} \sec (c+d x)\right ) \operatorname{Subst}\left (\int \frac{x^4 \left (a+b x^2\right )^p}{\left (1-x^2\right )^{5/2}} \, dx,x,\sin (c+d x)\right )}{d}\\ &=\frac{\left (\sqrt{\cos ^2(c+d x)} \sec (c+d x) \left (a+b \sin ^2(c+d x)\right )^p \left (1+\frac{b \sin ^2(c+d x)}{a}\right )^{-p}\right ) \operatorname{Subst}\left (\int \frac{x^4 \left (1+\frac{b x^2}{a}\right )^p}{\left (1-x^2\right )^{5/2}} \, dx,x,\sin (c+d x)\right )}{d}\\ &=\frac{F_1\left (\frac{5}{2};\frac{5}{2},-p;\frac{7}{2};\sin ^2(c+d x),-\frac{b \sin ^2(c+d x)}{a}\right ) \sqrt{\cos ^2(c+d x)} \sin ^4(c+d x) \left (a+b \sin ^2(c+d x)\right )^p \left (1+\frac{b \sin ^2(c+d x)}{a}\right )^{-p} \tan (c+d x)}{5 d}\\ \end{align*}

Mathematica [A]  time = 0.538817, size = 102, normalized size = 1.01 \[ \frac{\sin ^4(c+d x) \sqrt{\cos ^2(c+d x)} \tan (c+d x) \left (a+b \sin ^2(c+d x)\right )^p \left (\frac{a+b \sin ^2(c+d x)}{a}\right )^{-p} F_1\left (\frac{5}{2};\frac{5}{2},-p;\frac{7}{2};\sin ^2(c+d x),-\frac{b \sin ^2(c+d x)}{a}\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[c + d*x]^2)^p*Tan[c + d*x]^4,x]

[Out]

(AppellF1[5/2, 5/2, -p, 7/2, Sin[c + d*x]^2, -((b*Sin[c + d*x]^2)/a)]*Sqrt[Cos[c + d*x]^2]*Sin[c + d*x]^4*(a +
 b*Sin[c + d*x]^2)^p*Tan[c + d*x])/(5*d*((a + b*Sin[c + d*x]^2)/a)^p)

________________________________________________________________________________________

Maple [F]  time = 0.517, size = 0, normalized size = 0. \begin{align*} \int \left ( a+ \left ( \sin \left ( dx+c \right ) \right ) ^{2}b \right ) ^{p} \left ( \tan \left ( dx+c \right ) \right ) ^{4}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+sin(d*x+c)^2*b)^p*tan(d*x+c)^4,x)

[Out]

int((a+sin(d*x+c)^2*b)^p*tan(d*x+c)^4,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sin \left (d x + c\right )^{2} + a\right )}^{p} \tan \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)^2)^p*tan(d*x+c)^4,x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c)^2 + a)^p*tan(d*x + c)^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (-b \cos \left (d x + c\right )^{2} + a + b\right )}^{p} \tan \left (d x + c\right )^{4}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)^2)^p*tan(d*x+c)^4,x, algorithm="fricas")

[Out]

integral((-b*cos(d*x + c)^2 + a + b)^p*tan(d*x + c)^4, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)**2)**p*tan(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sin \left (d x + c\right )^{2} + a\right )}^{p} \tan \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)^2)^p*tan(d*x+c)^4,x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c)^2 + a)^p*tan(d*x + c)^4, x)